Trigonometric Ratios
Given a right triangle with angle `\theta`
Sine Ratio: `\sin \theta = \frac{\text{Opposite side} }{\text{Hypotenuse}} `
Cosine Ratio: `\cos \theta = \frac{\text{Adjacent side} }{\text{Hypotenuse}} `
Tangent Ratio: `\tan \theta = \frac{\text{Opposite side} }{\text{Adjacent side}} `
Cosecant Ratio: `\csc \theta = \frac{\text{Hypotenuse} }{\text{Opposite side}} `
Secant Ratio : `\sec \theta = \frac{\text{Hypotenuse} }{\text{Adjacent side}} `
Cotangent Ratio : `\cot \theta = \frac{\text{Adjacent side} }{\text{Opposite side}} `
Trigonometric Identities
Reciprocal Identities`\sin \theta = \frac{1}{\csc \theta}`
`\cos\theta = \frac{1}{\sec \theta}`
`\tan \theta = \frac{1}{\cot \theta}`
`\csc \theta = \frac{1}{\sin \theta}`
`\sec \theta = \frac{1}{\cos\theta}`
`\cot \theta = \frac{1}{\tan \theta}`
Tangent and Cotangent Identities
`\tan \theta = \frac{\sin \theta}{\cos \theta}`
`\cot \theta = \frac{\cos \theta}{\sin \theta}`
Pythagorean Identities
` \sin ^{2} \theta + \cos ^{2} \theta = 1`
` 1+ \tan^{2} \theta = \csc^{2}\theta `
`1+\cot^{2}\theta =\sec^{2}\theta `
Double Angle Formulas
`\sin 2\theta = 2 \sin theta \cos theta`
`\cos 2 \theta = \cos^2 \theta- \sin^2 \theta`
`\cos 2 \theta = 1-2 \sin^2 \theta`
`\cos 2 \theta =2\cos^2 \theta - 1`
`\tan 2 \theta = \frac{2\tan \theta}{1- \tan ^2 \theta}`
Even and Odd Angle Formulas
`\sin(-θ) = -\sinθ
$$\cos(-θ) = \cosθ$$
$$\tan(-θ) = -\tanθ$$
$$\cot(-θ) = -\cotθ$$
$$\sec(-θ) = \secθ$$
$$\csc(-θ) = -\cscθ$$
Triple Angle Formulas
`\sin(3\theta)=3 \sin{\theta}-4\sin^3 (\theta)`
`\cos(3\theta)=4cos^3(\theta)-3 cos (\theta )`
`\tan(3\theta)= \frac{3\tan \theta -\tan^3\theta}{1-3\tan^2\theta}`
Addition Trigonometric Formulas
`\sin(A+B)=\sin A \cos B+ \cos A \sin B`
`\sin (A-B) = \sin A \cos B- \cos A \sin B`
`\cos(A+B) = \cos A \cos B - \sin A \sin B`
` \cos (A-B) = \cos A \cos B + \sin A \sin B `
`\tan(A+B) =\frac{\tan A+ \tan B}{1- \tan A \tan B}`
`\tan (A-B) = \frac{\tan A-\tan B}{1+ \tan A \tan B}`
Factorisation Formulas
`\sin A +\sin B =2 \sin(\frac{A+B}{2}\cos(\frac{A-B}{2})`
`\sin A - \sin B = 2\cos (\frac{A+B}{2})\sin(\frac{A-B}{2})`
`\cos A + \cos B = 2 \cos(\frac{A+B}{2})\cos (\frac{A-B}{2}) `
`\cos A - \cos B = -2 \sin (\frac{A+B}{2})\sin (\frac{A-B}{2})`
Trigonometry Table
0 Comments