Derivative Formulas

The derivative of a function is one of the basic and important concepts used in calculus and the process of finding a derivative is known as differentiation.


Derivative of a function

The derivative of a function (f), denoted by  `f′ ` , is the function whose domain consists of those values of  x such that the following limit exists:

`f'(x) =\lim_{h \to 0} \frac{f(x+h-f(x))}{h}`

Rules of Differentiation

Sum Rule:
If `y=u+v` , then `\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx}`

Difference Rule:
If $y=u-v$ , then $\frac{dy}{dx}= \frac{du}{dx}-\frac{dv}{dx}$

Product Rule : 
If $y=uv$ , then $\frac{dy}{dx}= u\frac{dv}{dx}+v\frac{du}{dx}$

Quotient Rule
If $y=\frac{u}{v}$ , then $\frac{dy}{dx}=\frac{v\frac{du}{dx}+u\frac{dv}{dx}}{v^2}$

Chain Rule : 
If $y= f(u)$ and $u=g(x)$ , $y=f(g(x))$ , then $\frac{dy}{dx}=\frac{d}{dx} (fg(x)) g'(x)$

Constant Rule:
If $y=ku$, then $\frac{dy}{dx}=k\frac{du}{dx}$ , 
where k =constant

Standard Derivative of Functions

1) $\frac{d}{dx}k =0 $ , where k= constant.

2) $\frac{d}{dx}x=1$

3) $\frac{d}{dx}x^n=n \cdot x^{n-1}$

4)$\frac{d}{dx}a^x= a^x \log{x}$

5) $\frac{d}{dx}e^x = e^x$

6) $\frac{d}{dx}(\frac{1}{x})=-\frac{1}{x^2}$

7) $\frac{d}{dx}\sqrt{x}= \frac{1}{2\sqrt{x}}$

8)$\frac{d}{dx} \log (x) = \frac{1}{x}$

9)$\frac{d}{dx} \sin x= \cos x$

10) $\frac{d}{dx} \cos x =- \sin x $

11) $\frac{d}{dx} \tan x = -\sec ^2 x $

12) $\frac{d}{dx} \cot x = -\csc ^2 x $

13) $\frac{d}{dx} \sec x = \sec x \times \tan x$

14) $\frac{d}{dx} \csc x= - \csc x \times \cot x$

Post a Comment

0 Comments